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Finding Near-Optimal Bayesian Experimental Designs via

Genetic Algorithms

M. Hamapa, H. E Magrtz, C. S. REESE, and A. G. WiLsoN

This article shows how a genetic algorithm can be used to find
near-optimal Bayesian experimental designs for regression mod-
els. The design ¢riterion considered is the expected Shannon
information gain of the posterior distribution obtained from per-
forming a given experiment compared with the prior distribution.
Genetic algorithms are described and then applied to experimen-
tal design. The methodology is then illustrated with a wide range
of examples: lincar and nonlinear regression, single and multi-
ple factors, and normal and Bernoulli distributed experimental
data.

KEY WORDS: Expected information gain; Logistic regres-
sion; Linear and nonlinear regression; Multifactor designs;
Shannon information.

1. INTRODUCTION

This article presents and illustrates a practical, casy-to-use
technigue for obtaining near-optimal Bayesian experimental de-
signs for regression models. The technigue is based on the use of
a genetic algorithm (GA), and the designs we seek are those that
nearly maximize the expected gain in Shannon information pro-
vided by the experiment. We illustrate the broad applicability of
our approach using five examples, which include both linear and
nonlinear models as well as continuous and binary responses.

Az in many other areas of statistics, in the past few decades
we have seen a significant increase in Bayesian methods in ex-
perimental design for regression models. A major reason for this
interest is that, before an experiment is conducted, pertinent in-
formation is often available that can be formally considered in
a Bayesian approach. In fact, the existence of this “prior” infor-
mation often serves as a prime modivation for the experiment.
Chaloner and Verdinelli (1995) gave an excellent overview of
Bayesian experimental design for both regression and analysis
of variance models.

Following earlier decision analysis work by Raiffa and
Schlaifer (1961), Lindley (1972) suggested a decision-theoretic
approach to Bayesian experimental design. For a specified util-
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ity function that reflects the purpose of the experiment, he sug-
gested that a design be chosen that maximizes the expected util-
ity. Here the expectation is taken with respect to the two classes
of unknowns: the sample response data, which has yet to be ob-
served when the design is being considered. and the unknown
vitlues of the parameters in an assumed response model. A design
which maximizes the expected utility is known as an “optimal™
Bayesian experimental design.

The choice of a utility function is extremely important, Lind-
ley (1956) suggested that the expected Shannon information gain
(Shannon 1948) might be a useful utility, and Stone (1959), De-
Groot (1962, 1986), Bernardo (1979) and others have followed
Lindley's snggestion to choose designs that maximize the ex-
pected gain in Shannon information provided by the experiment,
We note that this criterion is equivalent to choosing designs that
maximize the expected Kullback—Leibler distance between the
prior and posterior distributions (Chaloner and Verdinelli 1995).

In the well-known case of a normal linear regression model
y|3.0% ~ N(X3,01), Blo* ~ N(B,, e*R),and 6%, 3, and
R are known, maximization of the expected Shannon informa-
tion gain is equivalent to choosing a design that maximizes the
determinant of the sum of X7X and R~!. Maximizing this
determinant is known as the Bayesian D-optimality criterion.
Bayesian D-optimality for linear regression models was consid-
ered hy Stone (1959}, Sinha (1970, Guttman (1971), Smith and
Verdinelli {1980), Dette (1993a, 1993b), and Verdinelli (2000).
More recently, Dette and Sperlich (1994, 1996), Mukhopad-
hyay and Haines (1995), He, Studden, and Sun (1996), Detie
(1996), Dette and Neugebauer (1997), AndereRendon, Mont-
gomery, and Rollier (1997), Detie and Wong (1998), Song and
Wong (1998), and Haines (1998) have considered Bayesian D-
optimal designs in nonlinear regression models.

Unfortunately, in many practical cases (such as when the vari-
ance o in the linear regression model considered above is un-
known), the integral defining the expected Shannon information
gain is intractable. Thus, calculating the expected Shannon in-
formation gain (the utility), as well as maximizing it to obtain
the desired optimal Bayesian design, are mathematically diffi-
cult tasks. This difficulty has had two major consequences,

First, with the exception of Flournoy (1993) and Clyde,
Muller, and Parmigiani (1996), few articles have appeared in
which Bayesian methods have actually been used o determine
optimal experimental designs prior to performing the actual ex-
periment.

Second, various numerical methods for determining “approx-
imately optimal” Bayesian experimental designs have been pro-
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posed. These approximations include methods that involve sim-
ulation, those that approximate the true posterior distribution
(e.g., using a normal distribution), those that approximate the
prior (such as with a discrete approximation), and those that
approximate the marginal distribution (such as using Laplace’s
method). Pilz (1991) and Chaloner and Verdinelli (1995) dis-
cussed these and other approximate methods for both linear
and nonlinear models. Muller (1998) also reviewed several
simulation-based methods for estimating the expected gain in
Shannon information and the use of simulated annealing for de-
termining optimal Bayesian designs. .

GA:ss are stochastic optimization methods that use Darwinian
models of population biology for obtaining near-optimal solu-
tions to multivariable objective functions. They are ideally suited
for searching irregular, poorly characterized function spaces.
The number of variables simultaneously considered by GAs may
range from a few through hundreds (sometimes even thousands).
GAs are extremely flexible in that they do not require the usual
mathematical restrictions of strict continuity, differentiability,
convexity, and so on of the objective function. The variables
can be some combination of continuous, discrete, or categori-
cal variables, and the continuous variables may also be ordered.
Thus, for reasons such as these, GAs have become quite useful
in practice. Goldberg (1989), Michalewicz (1992), and Holland
(1992a) are excellent textbooks on GAs, while Holland (1992b)
provides a nice introductory tutorial.

GAs have only recently been considered in statistical applica-
tions. Broudiscou, Leardi, and Phan-Tan-Luu (1996) used a GA
to construct standard D-optimal designs, and provided a nice
general introduction to the use of GAs in design. Chatterjee,
Laudato and Lynch (1996) introduced the use of GAs in a broad
range of statistical applications. In that article they concluded
“many statistical and mathematical restrictions that usually re-
strict modeling and analysis can be dispensed with by employing
the GA as an optimization technique.” Following Taguchi’s ro-
bust design ideology, Forouraghi (2000) used a GA to obtain
multiobjective robust designs.

We use a GA to determine near-optimal Bayesian experimen-
tal designs for a broad class of regression models. The class
includes both linear and nonlinear models as well as both con-
tinuous and binary responses. For convenience, we restrict con-
sideration to continuous independent (or predictor) variables,
although the extension to categorical factors (such as ANOVA
models) is straightforward.

Section 2 presents a practical and easy-to-apply GA for use
in solving the Shannon expected information gain criterion to

Genetic Algorithm Utility Estimation

generate
potentially high estimate the
EIG candidate EIG of the
designs candidate designs
Stage 1 Stage 2

Figure 1. Two-stage lterative Bayesian Experimental Design Solver
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obtain near-optimal Bayesian experimental designs for regres-
sion models. Section 3 illustrates the method using a broad range
of examples. Finally, Section 4 presents a summary and some
conclusions.

2. NEAR-OPTIMAL BAYESIAN EXPERIMENTAL
DESIGNS

For a given experimental design X, data y is observed ac-
cording to a specified sampling model f{y|6,X). Here 8 is a
vector of unknown parameters, of interest to be estimated, in the
sampling model. Although the prior distribution 7 (&) does not
depend on X, the posterior distribution 7(8|y, X)) depends on
X through the sampling model. The expected gain in Shannon
information given by the design X is

Ey g {log[m(8ly,X)/n(8)]}

~ [ [0 T2

This utility function is appropriate when the purpose of the ex-
periment is inference about 8. Note also that (1) is the expected
Kullback-Leibler distance between the prior and posterior dis-
tributions. Therefore, because the prior does not depend on the
design, the design X maximizing (1) is the one that maximizes
the utility function

f(yl6,X)m(6)dOdy. (1)

ux) = [ [login(ly. X))f(v10. X)m(0)dbay. @)

In the usual normal linear regression model with known error
variance o2, maximizing (2) reduces to finding the design matrix
X that maximizes det(X7X + R™!), where o2R is the condi-
tional prior covariance matrix of normally distributed  given o
and R is known. Although the procedure we will describe can
easily be applied using numerous other Bayesian design criteria
(see Chaloner and Verdinelli 1995), we restrict our considera-
tion here to finding those designs that nearly maximize (2). This
article refers to those designs that nearly maximize (2) as near-
optimal Bayesian expected information gain (EIG) designs.

As mentioned earlier, the main problem with (2) is that, for
many practical problems, the integration is intractable, and nu-
merical methods are needed to find optimal Bayesian designs.
This is also the case here. We propose a two-stage iterative pro-
cess for finding near-optimal Bayesian EIG designs. The process
is illustrated in Figure 1. In Stage 1 we use a GA to generate
potentially high EIG designs, and in Stage 2 we use Monte Carlo
simulation to numerically estimate the EIG utility of each of the
candidate designs proposed in Stage 1.

2.1 Stage 1: Genetic Algorithm

A GA operates on a “population” of candidate “solutions”
to the optimization problem. Traditional GAs consider a solu-
tion to be a bitstring (i.e., binary string), or chromosome, and
the population is comprised of chromosomes having the same
length and structure. In the case of experimental designs, a sin-
gle chromosome completely defines an experimental design X.
Each chromosome is first divided into as many bitfields as there
are observations or runs, and each bitfield is then further sub-
divided into sub-bitfields, which code the factor values for that
run. Thus, each chromosome will have a length equal to the sum



of the number of bits needed to code each factor value multiplied
by the number of runs in the experiment. For example, an n-run
design involving three factors each taking on 2* values in their
respective ranges would require chromosomes of length 3n2*
bits.

In many GA applications, however, natural (base 10) coding of
variables can be used without the necessity of resorting to binary
coding. Because of the convenience of using natural variables,
we likewise use this representation here. Thus, the length of each
chromosome is simply the product of the number of runs and the
number of factors. For convenience, suppose that the experiment
of interest contains p factors, and n runs must be made. Thus,
both p and n are fixed and known. If we consider each factor
level as a gene, then each chromosome (or design X) has np
genes whose values we seek.

We describe the construction of an initial population of solu-
tions and subsequent populations of solutions obtained by use
of the genetic operators of crossover and mutation within the
context of an elitist GA described in the following.

Recall that we have restricted our consideration to continuous
factors. We further assume that the design region is bounded, say,
L; < x; < U, for the ith factor x;. To begin the GA process, we
first generate an initial population of M random designs using
independent uniform random draws for each of the p factors x;
for each of the n runs. We then evaluate the utility (the “fitness”
in GA terminology) of each of these M random designs using
the Stage 2 approach described in Section 2.2. These M designs
are then ranked according to their utility—that is, designs with
higher utility get lower ranks. This completes the first generation
of the GA. |

The second (and subsequent) GA generations are now popu-
lated using genetic crossover and mutation. First, consider ge-
netic crossover. Two parent designs are randomly selected with-
out replacement from the initial population with probability in-
versely proportional to the rank of their utility among all the
M designs, making designs with higher utility more likely to
be selected. Then, the n runs of the parent designs are paired,
and a new crossover design is obtained by randomly selecting
a run from each pair. The two parents are then returned to the
initial population before the next crossover operation is per-
formed. In this way, additional M designs are constructed using
the crossover operator and, again, the utility of each new design
is evaluated as in Stage 2.

For each of the initial M designs in the current population,
we next apply genetic mutation to each factor x; of each of the
n runs. We also decrease the probability that mutation occurs
as the number of generations increases. We accomplish the evo-
lutionary phenomenon known as “punctuated equilibrium” (or
periodic upsets) by executing the GA in successive batches of
G generations which will be described in more detail later. For
example, we often set G = 100.

It is desired to mutate each factor value with probability that
decays exponentially as a function of generation. That is, muta-
tions become less and less likely as the number of generations
increases. To accomplish this, at generation g each factor value
is mutated with probability exp(—u x g) where u is a user-
specified mutation rate parameter.

Given that mutation of a factor value occurs, we then mutate
the value with expectation approximately equal to the current
value of the factor and variance that decreases with g. We ac-
complish this by means of a logit transformation as follows: first
compute z = (z — L)/(U — L) where z, L, and U are the cur-
rent, minimum and maximum values of the factor. Then calculate
d = log[z/(1 — 2)] + [uniform(0, 1) — .5] X ¥ x exp(—p X g).
Here 1 is a user-specified parameter that controls the rate at
which the variance decreases as a function of g. Finally, com-
pute u = L + (U — L) x exp(d)/[1 + exp(d)] which is the
desired mutated value between L and U. This logit transforma-
tion has the properties that the expected value is approximately
equal to the current factor value x and the standard deviation
decreases with g. Applying this mutation procedure to each of
the initial M designs, we generate an additional M designs and
the utility of each of these designs is calculated using the Stage
2 procedure.

In the original GA, each new population completely replaces
the previous one. It can then happen that the best (most fit)
solution in population k + 1 is worse than the best solution
in population k. Consequently, very good solutions can be lost
forever. A solution to this problem is to use an “elitist” GA.
At each generation we keep the best M designs (those with
highest utilities) out of the 3 x M designs (M initial designs,
M crossover designs and M mutated designs) which becomes
the population of initial designs for the next generation.

We execute the above GA in batches of G generations in order
to allow for “punctuated equilibrium.” In simple terms, punctu-
ated equilibrium is an observed genetic phenomenon in which
mutations essentially decrease over time but with periodic upsets
in this process (i.e., periodic large-scale catastrophic mutations
are occasionally permitted to occur). The best M solutions after a
given batch has been completed become the initial set of designs
for the next batch of G generations (with g reset to 1 for each
batch). Note that the probability of mutation is also reset to its
original level with each new batch (and subsequently decreases
with each new generation in a batch). After several batches of
G generations of solutions have been obtained in this way, we
finally report the design having the highest utility as our desired
near-optimal Bayesian experimental design. An algorithmic de-
scription of this GA process is given in the Appendix. Section 3
illustrates the performance of this GA.

2.2 Stage 2: Utility Estimation

The utility for each of the GA-produced candidate designs
generated at Stage 1 is estimated in Stage 2. For a given candidate
design X, we propose estimating the utility in (2) by Monte Carlo
simulation. We assume that it is possible to sample the known
prior distribution 7 (@) and assumed sampling model f(y|8, X)
conditional on € and X. We consider two cases:

1. the posterior distribution w(8|y, X) is available in closed
form; and

2. the posterior distribution is unavailable in closed form.

If the posterior distribution is available in closed form, then we
estimate the utility in (2) directly (using Monte Carlo simulation)
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as
. 1 &
0(X) =7 ; log[r(6Vy®, X)), 3)

where {(9(”, y®),l =1,2,...,L} denote the L correspond-
ing dependent pairs of randomly sampled values: 6® from the
prior distribution 7(8), and y¥) conditionally from the sampling
model f(y|6®,X).

If the posterior distribution is unavailable in closed form, then
we cannot use (3) directly. In this case, we estimate (2) as

FyD100 X)m(6Y)
Fy®IX)

X 1 <&
UX) =1 > log , )
=1

where {(0),y®), 1 =1,2,..., L} is the same set of randomly
sampled values as in (3). Here f(y(®)|X) is a suitable estimate of
the marginal distribution evaluated at y(); that is, an appropri-
ate estimate of the posterior normalizing constant for the given
design X.

Numerous methods have been proposed for estimating a
normalizing constant. The more popular methods include the
Laplace approximation and its variants (Tierney and Kadane
1986), Monte Carlo simulation methods such as importance
sampling (Geweke 1989; Hammersley and Handscomb 1964),
reciprocal importance sampling (Gelfand and Dey 1999), bridge
sampling (Meng and Wong 1996) and path sampling (Gelman
and Meng 1998). Two excellent surveys of existing methods
are Gelman and Meng (1998) and DiCiccio, Kass, Raftery, and
Wasserman (1997). In two exarhples we will consider in Section
3, the posterior is unknown, and we calculate f (y®]X) by nu-
merically integrating the product of the sampling model and the
prior distribution over 8. However, if the dimensionality of @
exceeds three, numerical integration is generally infeasible and
one of the other methods mentioned above must be used.

3. EXAMPLES

We now illustrate the performance of the two-stage itera-
tive procedure in Figure 1 using five examples: single-factor
quadratic regression, single-factor stylized quadratic regression,
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three-factor quadratic response surface, single-factor nonlinear
regression, and single-factor logistic regression.

3.1 Example 1: Single-Factor Quadratic Regression

Pilz (1991, example 12.5) considered the quadratic regression
model

y]8,X ~ N6y + 0:X + 6,X2,521), (5)

where XT' = (z,2,,...,,) denotes the n-vector of design
values and z; € [—1,1] and o2 is assumed known. The condi-
tional prior distribution of 87 = (6, 61, 62) given o2 is 8|02 ~
N(v,0’R). Let vT = (0,0,0), R = diag(0.1,0.1,0.2) and
0% = 1. Because o2 is known, the EIG in (2) has a closed
form and can be evaluated exactly. According to Pilz (1991),
the optimal Bayesian D-optimal design (which as mentioned
previously is the same as the optimal EIG design because o2 is
known) places one half the design runs at —1 and one half at 1.
This is a surprising result since the optimal design to estimate
a second order model (three parameters) contains only two de-
sign points. Pilz (1991) provided a nice discussion of the related
issue of one-point designs:

The possibility of the existence of optimal one-point designs arises from the fact
that the Bayesian information matrix is positive definite whatever the design.
In paricular, there is good hope for the optimality of such designs if the prior
precision matrix has a convenient structure, for example such that the prior
knowledge arises from previous observations with a suitable (almost optimal)
“prior” design.

For n = 4, then the optimal EIG designis XT = (-1,~1,1,1).

We ran the GA described in Section 2 for this problem with
the following parameters: n = 4,p = 1,u = 0.01,9 =
1,M = 10, one batch with G = 100; namely, popula-
tions of size 10 are generated for 100 generations. The re-
sult obtained after this implementation of the GA is X7 =
(—0.999892, —0.999993, 0.999905, 0.999854) with an EIG of
0.576272, where EIG is defined in (1). See Figure 2 for a plot
which shows how the EIG increases over the 100 generations.

Pilz (1991) discussed the five-run case (n = 5)
and stated that approximate exact designs could be ob-
tained by rounding one half at —1 and 1 giving X7 =
(-1,-1,-1,1,1) or (-1,-1,1,1,1). Using two differ-
ent starting seeds for the random number generators used
in the GA, the following results were obtained: XT =
(—0.999923, —0.999912, 0.999909, 0.999890, 0.999864) with
an EIG of 0.703678 and X7 = (—0.998929, —0.9989952,
—0.998343, 0.999070,0.999116) with an EIG of 0.702559.
These results suggest that (—1,—-1,—1,1,1) and
(—=1,-1,1,1,1) are indeed exact designs; that is, optimal de-
signs for the five run case.

3.2 Example 2: Single-Factor Stylized Quadratic
Regression

Dette (1993b) considered the following stylized quadratic re-
gression model

y]|0,X ~ N(0:(1 — X) + 6,X2,620), (6)

where X7 = (z1,z2,...,%n) denotes the n-vector of design
values, z; € [0, 1] and o2 is assumed known.
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Figure 3. Example 3 Near-Opfimal Design

The conditional prior distribution of 8" = (#,, #3) given o*
is 8o ~ N(8p,0°R). Let 8] = (0,0), R = diag(0.1,0.2)
and ¢* = 1. Because o2 is known, the EIG in (1) has a closed
form and can be evaluated exactly. According to Dette (1993h),
for n = 8, the optimal Bayesian D-optimal design (which is
also the optimal EIG design because o is known) places six
runs each at () and two runs at 1,

We ran the GA for this problem with the following parameters:
n==8p=1u=000L ¢ =3 M = 10, one batch with
7 = 1. The result obtained was (to & decimal places) the
optimal design found theoretically by Dette (1993b); that is,
(0,0,0,0,0,0,1,1) with an EIG of 1.182362.

3.3 Example 3: Three-Factor Quadratic Response
Surface

Draper and Smith (1981, p. 390) considered an experiment
on a chemical process involving three factors identified as being
important. To better understand the impact of the factors on the
response of interest, yield, a 20-run central composite design
was performed. Tn coded variables, the central composite design
used has eight cube points, one at each comer point of a cube of
length 2 centered at (0,0,0), six star points consisting of a pair
for each of the three axes which are on the axes 5/3 away from
(0,0,0), and six center points at (0,0,0). The central composite
design allows a quadratic response surface (regression) model
to be fit

yig X

3 d
~N B+ 0K+ Y XX+ S 0 XE T

i=1 i< im]

where the design X is (X, X, X3) whose values are in
[-5/3,5/3].

Here, we assume that o2 is also unknown and use the con-
jugate prior for (8,a?), where 8 is the vector of 10 regression
coefficients in (7). The so-called normal-inverse gamma prior
has the following form: a? ~ IG({a, 3) and the conditional dis-
tribution of @ given o2 is 8|lo? ~ N, «*R). Rather diffuse

priors that contain the point estimates of the parameters based
on data from the central composite design were specified as fol-
lows: {a = &, 3 = 100} giving a prior mean and variance for
a? of 20 and 100, respectively, v is the zero vector, and R is the
diagonal matrix of 5's except for the [1,1] entry corresponding
to the intercept being 500,

To evaluate EIG in (1), while the posterior joint density of
(8,2?) has a closed form (i.e., normal-inverse gamma), the in-
tegral in (1) does not. Hence, {1} is estimated using (3) in which
L = 10,000 Monte Carlo simulations were performed.

Forthe GA, wehave n =20, p =3, 0= 001,40 = 1, M =
10. The results from several batches totaling 1100 generations
suggested the design displayed in Figure 3. In particular, the
design points obtained had factor levels near +5/3 or 0 so that
using these exact values gave a slightly better design whose EIG
is 26.253689 based on L = 1,000,000, Note the symmetry of
the near-optimal design displayed in Figure 3 which shows one
center point run and the remaining runs on the cube faces whose
length is 10/3. Note the missing point on the upper right edge
would be there it we considered a 2 1 -point design. As a matter of
comparison, the central composite design has a smaller EIG of
19994195 also based on L = 1,000,000. These designs differ
because the criteria used to obtain them are different. The classi-
cal central-composite design considers constant prediction vari-
ance at all points equidistant from the center, while the Bayesian
design considers the expected information gain from the experi-
ment. However, in both cases, the same response surface model
15 assumed.

3.4 Example 4: One-Factor Nonlinear Regression

Sebastiani and Wynn (2000) considered experimental design
for a first-order decay nonlinear regression model:

v X ~ N{exp(—0X), oI}, (%)

where XT = (xy,22...., z,) denotes the n-vector of design
values and &; € [{'], l] and o is assumed known.

Here we consider the n = 3 case with ¢ = 0.25. To illus-
trate the use of an asymmetric prior distribution, we took the
prior distribution of ¢ to be right-triangular(1,3) whose density
is () = (# — 1)/2. Now the posterior of # in EIG given in (1)
does not have a closed form but can be approximated by

£ (16, X)(6) o

fly|X)

where fly |X) was obtained by a one-dimensional numerical
integration.

Sebastiani and Wynn (2000) showed that the optimal design
for a three-point discrete uniform prior at (1,2,3) was a one-point
design with all three runs at 0.5628. Likely, the optimal design is
also a one-point design for the dght-triangular prior considered
here. A heuristic oplimization was employed that evaluated a
number of ane point designs that led to the near-optimal design
with all three runs at 0.35625; its EIG is (.138378 (based on
L = 100,000) for purposes of comparison,

Weranthe GAwithn =3, p =1, 0 = 001,17 = 3, M = 10,
one batch with & = 100, L = 10,000 and obtained the design
(037218, 0.36468, 0.39967). Its EIG based on L = 100,000
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is 0.137985. Thus, the GA found a design comparable to the
near-optimal design given above.

3.5 Example 5: One-Factor Logistic Regression

Chaloner and Larntz (1989) considered experimental design
for a logistic regression model:

¥18, 1, X ~ Bernoulli [1/(1 + exp(—B(X — )))], (10)

where XT = (21, z2,...,Tn) denotes the n-vector of design
values and z; € [—1,1].

Here we take the prior distribution for 3 to be Uniform(6, 8),
1 to be Uniform(—0.3,0.3) and n = 20. Now the posterior of
6 = (3, 1) does not have a closed form but can also be obtained
by (9) where the estimated marginal f (y|X) was obtained by a
two-dimensional numerical integration.

We ran the GA withn = 20,p = 1,0 =001, =3,M =
10, one batch with G = 200, L = 10,000 and obtained the de-
sign displayed in Figure 4. (The design points have been jittered
on the vertical scale to distinctly see all 20 design points.) Its
EIG based on L = 100,000 is 0.924180.

Chaloner and Larntz (1989) investigated another criterion, the
expected log determinant of observed information, in which the
optimal design was approximately (—0.3,0, 0.3) with weights
(0.36,0.28,0.36) (read off their Figure 1). For n = 20, the num-
ber of runs at (—0.3,0,0.3) are (7,6,7) and its EIG is 0.801324
based on L = 100,000. As a matter of comparison, placing
(7,6,7) runs at (—1, 0, 1), approximately uniformly spread over
the experimental region at three points, has an EIG of 0.520181.
Even taking the near-optimal design displayed in Figure 4 and
rounding to the nearest tenth (i.e., (5,11,4) runs at (—0.1, 0, 0.1))
has an EIG of 0.840404.

4. CONCLUSIONS

This article has shown how GAs can be used to find near-
optimal Bayesian experimental designs. Here, we considered the
expected Shannon information gain, but other design criteria can
be handled easily. This methodology was illustrated with a wide
range of examples. The methodology is easy to implement and
allows a practical approach for designing even more complicated
experiments. The near symmetry of the resulting best designs
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may suggest a symmetrical design which may indeed be optimal.
In any case, the best designs found by GAs are likely to be good
practical designs and can always be compared against designs
suggested by the experimenter’s intuition.

One possible modification to our approach would be to include
in the starting set of designs to which the GA is applied the
designs suggested by the experimenter’s intuition. Although not
illustrated in our examples, GA’s can be applied to ANOVA
models as well as regression models. In summary, we believe
that GAs provide a useful addition to the statistical practitioner’s
toolkit for designing experiments.

APPENDIX

Pseudo-code for finding near-optimal Bayesian experimental
designs via a Genetic Algorithm

Notation:

k - number of factors

n - number of runs

x; - ith factor with range L; < z; < U;
X - design, an n X k matrix

M - population size

G - number of generations

Pseudo-code:

Generation O:

+ generate M random designs X by drawing z; from
Uniform(L;, U;) for each of n runs and k factors

« evaluate utility (expected information gain) for each de-
sign (see (2) or the estimates in (3) or (4))

+ order designs by decreasing utility

Perform generation g for generations g = 1,...,G {
Generation g

» generate M designs X by CROSSOVER (see below)

» generate M designs X by MUTATION (see below)

* evaluate utility of the 2M designs generated by crossover
and mutation,

* order 3M designs (2M designs and top M designs from
generation g — 1) by decreasing utility

* retain M designs with largest utility for generation g + 1

}

CROSSOVER

+ from the M designs retained from the previous generation,
pick two designs with probability inversely proportional
to their utility rank (largest utility has rank 1)

* the ith run of the generated design is generated by ran-
domly choosing from the ith runs of the two picked de-
signs, i =1,...,n

MUTATION

 for each of the M designs retained from the previous gen-
eration (referred to as current designs), a new design is
generated as follows



« each entry of a current design is mutated with probability
exp(—p X g); that is, the mutation probability depends on

g
 if an entry is mutated, the new entry is obtained by draw-

ing from a particular distribution (see Section 2.1) which
is approximately centered at the current entry and whose
variance depends on the tuning parameter 1.

[Received July 2000. Revised January 2001.]
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